Hydraulic leg extension is not necessarily the main drive in large spiders.

نویسندگان

  • Tom Weihmann
  • Michael Günther
  • Reinhard Blickhan
چکیده

Unlike most other arthropods, spiders have no extensor muscles in major leg joints. Therefore, hydraulic pressure generated in the prosoma provides leg extension. For decades, this mechanism was held responsible for the generation of the majority of the ground reaction forces, particularly in the hind legs. During propulsion, the front leg pairs must shorten whereas the hind legs have to be extended. Assuming that hind legs are essentially driven by hydraulics, their force vectors must pass the leg joints ventrally. However, at least in accelerated escape manoeuvres, we show here for the large cursorial spider species Ancylometes concolor that these force vectors, when projected into the leg plane, pass all leg joints dorsally. This indicates a reduced impact of the hydraulic mechanism on the generation of ground reaction forces. Although hydraulic leg extension still modulates their direction, the observed steep force vectors at the hind legs indicate a strong activity of flexors in the proximal joint complex that push the legs against the substrate. Consequently, the muscular mechanisms are dominant at least in the hind legs of large spiders.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Hydraulic Mechanism of the Spider Leg

Hinge joints occur in the legs of various arthropods, notably Limuhis (Snodgrass, 1952); arachnids; diplopods, chilopods and pauropods (Manton, 19586). At a hinge joint flexion is muscular, but the anatomical form of the joint rarely permits the presence of antagonistic extensors (see Manton, 19580,%. 151 for an exception). In the recent account of the leg muscles of the house spider Tegenaria ...

متن کامل

Increasing the Efficiency of the Power Electronic Converter for a Proposed Dual Stator Winding Squirrel-Cage Induction Motor Drive Using a Five-Leg Inverter at Low Speeds

A dual stator winding squirrel-cage induction motor (DSWIM) is a brushless single-frame induction motor that contains a stator with two isolated three-phase windings wound with dissimilar numbers of poles. Each stator winding is fed by an independent three-phase inverter. The appropriate efficiency of this motor is obtained when the ratio of two frequencies feeding the machine is equal to the r...

متن کامل

Active articulation for future space applications inspired by the hydraulic system of spiders.

This paper presents and discusses a novel mechanism which was conceived taking inspiration from the micro-hydraulic system used by spiders to extend their legs. The mechanism has the potential to be used in future space applications, although the harsh space conditions, and in particular outgassing, should be carefully addressed in the design of a space-qualified model. The new system has one d...

متن کامل

Effect of temperature on leg kinematics in sprinting tarantulas (Aphonopelma hentzi): high speed may limit hydraulic joint actuation.

Tarantulas extend the femur-patella (proximal) and tibia-metatarsal (distal) joints of their legs hydraulically. Because these two hydraulically actuated joints are positioned in series, hemolymph flow within each leg is expected to mechanically couple the movement of the joints. In the current study, we tested two hypotheses: (1) at lower temperatures, movement of the two in-series hydraulic j...

متن کامل

رابطه گشتاور نسبی ایزوکینتیک مفاصل ران، زانو و مچ پا با ارتفاع پرش با پای راهنما در مردان جوان

Objective: The aim of this study was to investigate the relationship between isokinetic relative torques of hip, knee and ankle joints and the height of guide leg jump in young men. Methods: 27 college male athletes with mean age of 25±3.5 years, height 178.5±7.8 cm and weight of 75.7±10.7 kg voluntarily participated in this study. Isokinetic torque of hip, knee and ankl...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of experimental biology

دوره 215 Pt 4  شماره 

صفحات  -

تاریخ انتشار 2012